Single-cell-based models in biology and medicine, Single-Cell-Based Models in Biology and Medicine | Alexander Anderson | Springer


  • Single-Cell-Based Models in Biology and Medicine - - Englische Bücher kaufen | Ex Libris
  • Weiter lesen Modellierung zellulärer Gliomwachstumsprozesse in ihrer Mikroumgebung
  • In den Warenkorb Beschreibung Aimed at postgraduate students in a variety of biology-related disciplines, this volume presents a collection of mathematical and computational single-cell-based models and their application.
  • Theory - Appendices Rezensionen From the reviews:
  • Single-Cell-Based Models in Biology and Medicine (eBook, PDF) - Portofrei bei bümagical-sides.de

Charles A. Gersbach, Ph. Abstract The study of cell lineage commitment is critical to improving our understanding of tissue development and regeneration and to enhancing stem cell-based therapies and engineered tissue replacements.

αποκαλυψη λισα ρενε τζοουνς pdf 525

Recently, the discovery of an unanticipated degree of variability in fundamental biological processes, including divergent responses of genetically identical cells to various stimuli, has provided mechanistic insight into cellular decision making and the collective behavior of cell populations. Therefore the study of lineage commitment with single-cell resolution could provide greater knowledge of cellular differentiation mechanisms and the influence of noise on cell processes.

Progress, challenges and standards for single cell proteomics - Nikolai Slavov - SCP2018

This will require the adoption of new technologies for single-cell analysis, in contrast to traditional single-cell-based models in biology and medicine that typically measure average values of bulk population behavior. This review discusses the recent development of methods wann melden nach erstem kennenlernen analyzing the behavior of individual cells and how these approaches are leading to deeper understanding and better control of cellular decision making.

This unique approach to repairing tissues is accompanied by a diverse set of challenges. Regenerative medicine strategies often rely on specific lineage-committed cell types that perform all the appropriate functions for target tissue regeneration.

single-cell-based models in biology and medicine

Alternatively, progenitor cells, such single-cell-based models in biology and medicine stem cells, may be used such that native or external cues guide their differentiation into the appropriate cell type. For both approaches, it is essential to have a thorough understanding of cell lineage commitment and precise control over this process for these cell-based therapies to be safe and effective.

A large toolkit exists for directed cell lineage commitment in regenerative applications.

Computational Cell Biology

Soluble growth factors can be used to maintain pluripotency or direct stem cells to defined lineages by activating natural signaling pathways [ 23 ]. Additionally, the composition and properties of the extracellular matrix and intercellular contact can control these pathways [ 45 ].

single-cell-based models in biology and medicine single bayernticket gültigkeit

Various biomaterials have been engineered to serve as scaffolds that guide cell fate for both in vitro and in vivo applications [ 67 ]. New therapies being released single-cell-based models in biology and medicine market show the promise of regenerative medicine using techniques such as these [ 8 ].

Schütte, Prof. Dr. Christof

The field is being further refined by the development of gene therapies and genetic reprogramming, as discussed in more detail below. An increased understanding of cell lineage commitment has single-cell-based models in biology and medicine potential to catalyze advances in all of these areas. Long-term changes in cell behavior, including cell lineage commitment, are almost exclusively guided by changes in gene expression.

Transcription factors are the main components of the cellular machinery that interact with DNA and modulate gene expression.

Groups of the interdisciplinary program [email protected]

The delivery of specific factors associated with particular cell states can reprogram the cell by activating the corresponding gene networks [ 9 - 13 ]. The prototypical example of transcription factor-driven differentiation in mammalian cells is the induction of myogenesis by the muscle-specific transcription factor MyoD [ 1415 ].

kennenlernen gruppenarbeit

Forced expression of MyoD robustly converts various cell types to singles aus bonn facebook skeletal myoblast-like phenotype [ 1617 ]. Master transcription factors that induce several other cell lineages have also been identified.

partnervermittlungen bayern

For example, Runx2 drives osteoblast differentiation and skeletogenesis [ 18 - 22 ], Sox9 regulates cartilage development neue freunde kennenlernen chondrogenic gene expression [ 23 - 25 ], single-cell-based models in biology and medicine Ascl1 in conjunction with other factors induces the development of a neuronal phenotype [ 26 - 30 ].

Furthermore, the delivery of Pdx1 transdifferentiates liver and exocrine cells into an insulin-producing phenotype similar to pancreatic beta-islet cells [ 31 - single-cell-based models in biology and medicine ] and GATA4 with a cocktail of other factors can drive cells to become functionally similar to cardiomyocytes both in vitro [ 36 ] and in vivo [ 3738 ].

Write a review

These are only a few examples of the different factors found to induce transdifferentiation. The landmark discovery that the transcription factors Oct4, Sox2, Klf4, and c-Myc can create a pluripotent state in terminally-differentiated adult cells [ 39 - 41 ] has created numerous possibilities for directing cells towards a desired phenotype for applications single-cell-based models in biology and medicine regenerative medicine [ 13 ].

Importantly, all of these examples of transcription factor-driven genetic reprogramming are inefficient processes. Production of induced pluripotent stem cells iPSCs results in reprogramming frequencies that range from 0.

Single-Cell-Based Models in Biology and Medicine (eBook, PDF)

Early iterations of iPSC production methods were unable to meet some hallmarks of pluripotency such as chimera generation or germline-competency [ 3943 ]. These results suggested that cells can exist in a partially reprogrammed state.

In this state, cells are not able to revert to their original phenotype but also are not completely reprogrammed to the intended phenotype [ 44 ]. Similarly, individual cells show variable responses to the same reprogramming stimuli, possibly because of stochastic variability in the population [ 45 ]. Furthermore, reprogrammed iPSCs that have not differentiated are capable of forming tumors after implantation, and therefore it must be ensured that all cells used therapeutically have been completely directed to a nontumorigenic phenotype.

singlebörse hanau jemanden kennenlernen facebook

A thorough understanding of decision making at the single-cell level is necessary to address these issues. Additionally, the observation of single-cell behavior and heterogeneity within a cell population can provide deeper insight into the mechanisms of natural differentiation and lineage commitment.

This review focuses on cellular heterogeneity in the context of cell differentiation and genetic reprogramming and discusses methods for analyzing single-cell behavior that can expand our understanding of cellular lineage commitment.

Single-Cell-Based Models in Biology and Medicine

Origins of Heterogeneity in Cell Populations The value of a biochemical measurement averaged across a large cell population does not necessarily describe the value for any one cell within that population Fig. This misrepresentation is exacerbated in data sets that consist of dissimilar single-cell-based models in biology and medicine states, such as distinct cell phenotypes. In these systems, single-cell-based models in biology and medicine average does not accurately represent either state.

Because traditional biochemical assays of cell activity, such as Western blot and RT-PCR, make bulk measurements of the aggregate cellular population, there is a clear opportunity to more accurately describe cell behavior with assays that quantitatively describe single cells.